Is it possible to estimate some 'safety' metric to assess the effectiveness of Intelligent Transportation Systems? In particular, we are interested in using Inter-Vehicle Communication (IVC) beaconing for increasing drivers' safety at intersections. In the last couple of years, the vehicular networking community reported in several studies that simple network metrics are not sufficient to evaluate safety enhancing protocols and applications. We present a classification scheme that allows the quantification of such improvements by determining how many potential crashes happen or can be avoided by a specific IVC approach. Using a modified road traffic simulator that allowed selected vehicles to disregard traffic rules, we investigated the impact of safety messaging between cars approaching an intersection. We show that in suburban environments simple beaconing is not as effective as anticipated. Yet, simple one-hop relaying, e.g., by vehicles parked close to an intersection, can improve drivers' safety substantially. Since the key purpose of IVC is safety, the paper closes the loop in the evaluation of the effectiveness of vehicular networks as defined today.
Original Version (at publishers web site)
Authors' Version (PDF on this web site)
BibTeX
Stefan Joerer
Michele Segata
Bastian Bloessl
Renato Lo Cigno
Christoph Sommer
Falko Dressler
@inproceedings{joerer2012tocrash,
address = {Seoul, Korea},
author = {Joerer, Stefan and Segata, Michele and Bloessl, Bastian and Lo Cigno, Renato and Sommer, Christoph and Dressler, Falko},
booktitle = {4th IEEE Vehicular Networking Conference (VNC 2012)},
doi = {10.1109/VNC.2012.6407441},
month = {November},
pages = {25-32},
publisher = {IEEE},
title = {{To Crash or Not to Crash: Estimating its Likelihood and Potentials of Beacon-based IVC Systems}},
year = {2012},
}
Links to final or draft versions of papers are presented here to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or distributed for commercial purposes without the explicit permission of the copyright holder.
The following applies to all papers listed above that have IEEE copyrights: Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
The following applies to all papers listed above that are in submission to IEEE conference/workshop proceeedings or journals: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.
The following applies to all papers listed above that have ACM copyrights: ACM COPYRIGHT NOTICE. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept., ACM, Inc., fax +1 (212) 869-0481, or permissions@acm.org.
The following applies to all SpringerLink papers listed above that have Springer Science+Business Media copyrights: The original publication is available at www.springerlink.com.